Applications of Graphene in Lithium-ion Batteries

Since the announcement of the 2010 Nobel Prize in physics, graphene has received considerable attention from researchers worldwide. In 2004, Dr. Andre Geim at the University of Manchester successfully used micromechanical techniques to isolate single sheets of graphene from highly ordered pyrolytic graphene. Graphene’s unique properties have made it a highly attractive topic of research.

What is graphene, anyway?

Graphene is a hexagonal, two-dimensional allotrope of carbon. It can be formed into zero-dimensional fullerines, one-dimensional carbon nanotubes, and stacked to form three-dimensional graphite. As such, graphene is a basic component for other graphite materials. Graphene possesses many special properties. It has a tensile strength of 130GPa, 100 times stronger than steel. Its thermal conductivity is 500W·m-1K-1, three times that of diamond. Its electron mobility is 15000cm2·V-1s-1, over ten times greater than commercial silicon. At 2630m2·g-1, it has an extremely high specific surface area. It is conductive at room temperature, and functions much more quickly than present-day conductors.

Graphine itself is only one carbon atom wide. It is theorized to have a large specific surface area, high conductivity, and a honeycomb-like structure,  which is what gives it potential for use in lithium-ion batteries. The proposed applications include direct use as an anode; use in tin-based, silicon-based, or transition metal anode composites; use as a composite in lithium iron phosphate cathodes; or use as a conductive additive.

(1)   Use of graphene as an anode in lithium-ion batteries

Because graphene is composed of a single atomic layer of carbon, lithium ions can be placed between two layers of graphene to create Li2C6, a superior electrode material (with an energy density of 744mAh·g-1) compared to traditional carbon anodes. The lithium ions are stored in the spaces between the graphene sheets. It is this morphology and structure that determine the effectiveness of graphene as an anode material.

Because pure graphene has a low coulombic efficiency, a high charge-discharge platform, and low cycle stability, graphene in itself is unlikely to replace existing carbon-based commercial materials currently used in lithium-ion battery anodes. Moreover, graphene sheets stacked together lose the advantage of a large surface area to store lithium ions. However, graphene makes an excellent composite material for electrodes.

(2)   Graphene-composite anodes

Graphene is highly conductive, demonstrates high mechanical strength, flexibility, and stability, and possesses a high specific surface area. In particular, chemically transformed graphene has a high number of functional groups, making it useful as a substrate for composite electrodes.

Graphene composites with tin, silicon, and transition metals have already been researched in depth. Tin and silicon-based electrodes, when doped with graphene, can maximize synergies between the two materials. Graphene can reduce the size of the active material, prevent the agglomeration of nanoparticles, improve electrical and ionic transmission, and improve mechanical stability. These improvements lead to better capacity and rate performance, as well as longer lifecycles.

The preparation of graphene-composite electrode materials requires the uniform distribution of nanoparticles on one or multiple layers of graphene. The effectiveness of the composite is determined by the interaction between the two materials.  Presently, graphene composite manufacturing is developing to a stage where the morphology of composites can be well-controlled through in-situ and interfacial reactions. Nonetheless, easier and more effective preparation methods are crucial for the future application of graphene in lithium-ion batteries.

(3)   Applications of graphene as cathode material

Conductivity of cathodes is a major limit to the effectiveness of a battery. Many cathode materials – particularly in cases of large electrical discharge – demonstrate lower capacity than should theoretically be the case. As a result, researchers hope that graphene’s unique surface area and conductive properties will improve the conductivity of cathode materials and increase lithium ion transmission.  Adding graphene into the cathode mix reduces interfacial resistance between the electrolyte and active cathode material, and improves Li+ transmission. At the same time, graphene placed on the surface of the cathode prevents metal oxides from dissolving or transforming, thereby maintaining structural stability.

Graphene is used most commonly with lithium iron phosphate cathodes. In these composites, graphene functions as a current collector coating and conductive additive. Graphene’s two-dimensional conductive surface provides a highly active and conductive electrode, thereby improving the battery’s conductivity and rate performance.

(4)   Graphene as a conductive additive

In order to improve conductivity, conductive additives such as graphite, acetylene black, and Super P are added to battery electrodes. As a carbon material, graphene is also very effective as a conductive additive for lithium-ion batteries.

On carbon-based anodes, graphene provides more consistent conductivity throughout many discharge cycles regardless of the presence of active substances which would otherwise interrupt conduction, as compared to acetylene black. This allows for better cycling and rate performance.

On lithium iron phosphate cathodes, Super P uses small particles to fill gaps in the cathode, thereby improving conductivity. By comparison, graphene’s flexible surfaces achieve greater conductivity with fewer materials.

The biggest barrier to adoption of graphene conductive additives is that its high-rate performance is yet lacking. Current research has been limited to improving cycling and capacity under low rate conditions.

Summary

Since graphene was first isolated, it has shown usefulness in many applications –electrochemical batteries, optoelectronics, catalysts, and more. There is further potential for applications in hydrogen storage, supercapacitors, lithium-sulfur batteries, lithium-air batteries, and other technologies. Looking forward, graphene will benefit from increasing scale, lower costs, better manufacturing methods, and improved functionality. CNESA is keeping a close eye on further developments and future applications for graphene.

Demand Response in China

In April 2015, following the Power Reform Policy No. 9,  NDRC released Notice on Improving Demand Side Management Pilots through Emergency Power Mechanisms, continuing to strengthen emphasis on demand side management and demand response. This article will analyze the status of demand response and its prospects in China.

Demand Response (DR) Overview

In 2012, FERC (Federal Energy Regulatory Commission) defined demand response as follows: Changes in electric usage by demand-side resources from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.

Demand response must be distinguished from demand side management (DSM). DSM refers to when the government, through policy measures, pricing mechanisms, and other measures to guide the users and change electricity usage behavior, thus lowering peak usage, improving the efficiency of the power supply, and optimizing other electricity usage aspects. DSM includes energy efficiency, permanent load reduction, and incentives for temporary load reduction. DR is a type of DSM, as shown in the figure below.

DSM Implementation Methods

The US has some of the best developed DR, and will thus be taken as an example in introducing DSM implementation methods. In the US market, DR is mainly divided into price-based DR and incentive-based DR.

Price-based DR resources are generally from residential users whose participation is completely voluntarily and thus cannot be dispatched. As it cannot be dispatched, it is difficult for the grid to accurately determine DR capacity. But as smart metering has popularized, this type of DR resource has shown new developments. With dispersed users aggregated as one, and with the allocation of ES devices, this creates an aggregate dispatchable resource which can via contracted electricity prices or other logical price signals giving direction and paying returns.

Incentive-based DR resources are generally commercial and industrial users, and can be publically transacted on electricity markets. Grid dispatchers can arrange electricity usage plans with participants in advance, and can be thusly dispatched. This type of DR resource will generally have an ES device such as a battery, thermal storage, or ice storage air conditioning.

In the above basic DR implementation measures, each power company in the US has its own particulars, equipment, and provide a great many DR projects for users to choose from to participate in. PG&E has programs for small business DR: smart air conditioning, and business and residential interconnection projects; and programs for large to medium businesses: business incentive programs, aggregate party programs, and subsidy programs.

DR in China’s electricity market

In November 2010, China's NDRC released the <Demand Side Management Methods>, formally beginning China's DSM efforts. Following, the government released related policies, such as 2011's Guidelines on Industrial Zone Demand Side Management, 2012's Interim Methods For Demand Side Management City Pilot Project Central Financial Incentive Fund Management, and 2015's Notice on Improving Demand Side Management Pilots through Emergency Power Mechanisms, promoting the development of DSM efforts.

The above documents differentiate between DSM-type permanent load reductions and temporary DR and differentiate set incentive mechanisms, but up to now, DSM has mainly been carried out via administrative means, load control devices, and energy efficiency, with non-ideal results. Meanwhile, pricing and other market mechanisms for directing users in voluntary participation DR have had quite limited development due to greatly limited peak pricing and subsidy incentive mechanisms.

 (Note: Price compensation mechanisms for DSM facilities: Energy efficient power plants and peak shifting/peak shaving technology and other permanent load reductions: 440 CNY/kWh in east China, 550 CNY/kWh in central and west China. Demand Response temporary peak load reductions: 100 CNY/kWh.)

Background of China’s DR electricity market

Although DR is very limited in China's electricity market, its importance is already taking shape in China's energy strategy and the new round of electricity reforms. Beijing, Shanghai, and other DSM pilot cities have been testing DR projects since 2014. The data shows that DR will gain great development space in China.

        More reasonable, improved peak pricing mechanisms will incentivize DR development

The newest policy published this April, makes a call "to incentivize active user participation in peak [super peak] load usage reduction and voluntary participation in DR, improved peak pricing and seasonal pricing can be set... to be set and implemented before the end of June 2015." The coverage scope and regional use of peak pricing will expand, and price-type DR will gain more incentives.

        Electric service company participation, strengthening an active market

Allowing more types of retail entities to enter the end user retail market is one of the new reforms. For DR, last April's Notice also states that it will "incentivize and support the development of electric service companies, attracting the participation of top national and even global electric service companies in pilot projects."  As the market opens, participating entities and competition will increase. This could result in the emergence of more innovative projects and products, driving DR development.

However, China's present DR market still has many barriers. Participation by grid companies is very low, grid operation data is still held closely by grid companies, and there is a lack of public channels. For non-grid companies, providing DR lacks the data for economic operation analysis. For users, as they lack real-time electricity usage data analysis, it is very difficult to build enthusiasm for DR participation.

CNESA acts as a primary integrated unit of the Beijing NDRC, actively participating in Beijing's DR pilot efforts, and is currently managing the establishment of a DR management platform, which will organize under certain conditions the participation of user groups in DR in the NDRC's pilot projects. CNESA hopes to advance the continued improvement of related policies through the efforts and coordination of many parties, creating even more space for energy storage to develop.