China’s First “Grid-Side Distributed Energy Battery Storage Station” Completes Successful Grid Connection


On June 18th, 2018, Henan Power Grid’s 100 MW energy storage demonstration project—the Luoyang Huanglong station containerized battery storage project—completed its successful connection to the grid.  The project marks a critical step for grid-side distributed battery storage in China.  The project will provide Henan Power Grid with load shifting services and promote the use of renewable energy within the grid.  The project is the first grid-side 100 MW scale distributed battery storage demonstration in China.

The grid faces a number of challenges, including the rapid addition of renewable energy, ensuring safe operations, finding suitable peak shaving methods, and financing of new construction.  Large-scale battery storage provides response time in milliseconds, providing safe and speedy power support to the grid.  Battery storage also provides new strategies for peak shaving and limiting air pollution, and can increase the efficiency in which energy is utilized in a variety of ways.

The Henan Power Grid project has been led by the Pinggao Group (a subsidiary of China State Grid) with construction by Luoyang Power Supply company.  The project includes 16 substations in nine regions, including Luoyang and Xinyang.  The plan utilizes distributed deployment, modular design, independent connections, and centralized dispatch. 

Now that the project has successfully connected to the grid, Pinggao Group is expected to increase project construction speed to complete the remaining project components. The project is scheduled to be fully complete before the end of 2018.  Pinggao Group has in recent years been an active promoter of large-capacity battery storage technology and innovative business models.  The successful implementation of the Henan Grid project will be an important trial for the use of large-capacity distributed battery storage, and a significant contribution to the goals of the Guiding Opinions on Promoting Energy Storage Technology and Development.  The project creates a basis for commercialized applications and sustainability in the power grid, and is an important step for China in the advancement of the energy revolution and energy internet development.

China Energy Storage Alliance Joins ADB Asia Clean Energy Forum 2018


The Asian Development Bank held its annual Asia Clean Energy Forum 2018 the week of June 4-8 at ADB headquarters in Manila, Philippines.  The forum, one of the largest clean energy events in Asia, featured a wide variety of presentations, discussion sessions, and deep dive workshops covering a diverse range of themes such as Innovations in Energy Efficiency, Innovations in Renewable Energy, and Increasing Energy Access.  The event was attended by over 1,000 guests from throughout the Asia-Pacific region.

The China Energy Storage Alliance is proud to have taken part in the “Battery Energy Storage Technology for Clean Energy” Deep Dive Workshop held on June 8th.  CNESA representative George Dudley delivered a presentation introducing China’s energy storage market and policy environment.  Representatives from the India Energy Storage Alliance and Korea Battery Industry Association also delivered presentations providing background on the energy storage policy environments in their own countries. In addition to energy storage policy, other forum themes included economics & financing, grid applications (such as frequency regulation and demand response), and renewable integration.  Over a dozen expert presenters from the non-profit and private sectors shared their knowledge and experience on battery energy storage.


Since 2006, the Asia Clean Energy Forum has been bringing together clean energy experts, developers, policymakers, non-profit organizations, and more.  Learn more about the ACEF conference at the official website.  The China Energy Storage Alliance, the first non-profit dedicated to energy storage in China, was founded in 2010.  Representing over 200 member organizations from all aspects of the energy storage industry, CNESA serves as the voice of energy storage across China.  CNESA’s own International Conference and Expo is held in May of each year. 

ESIE 2018 Media Report – Which Energy Storage Application has the Greatest Prospects for the Future?

Author: DiDi Beijixing Energy Storage Online


In recent years, the value of energy storage has become increasingly clear, whether in behind-the-meter, ancillary services, renewable integration, or other applications.  Yet when it comes to economic benefits, energy storage business models are still in an exploratory stage.  There are still many questions to be answered. What direction can energy storage develop in in the future?  How do we uncover energy storage’s potential? The author visited the 7th annual Energy Storage International Conference and Expo (ESIE 2018) to learn more about the future of energy storage in China.

According to statistics from the CNESA Global Energy Storage Project Database, as of the 2017 year’s end, China’s total operational energy storage capacity totaled 28.9GW, an increase of 19% from the previous year.  Pumped hydro energy storage made up the majority of this capacity, at nearly 99%. Electrochemical energy storage capacity totaled 389.8MW, an increase of 45% from the previous year. In a comparison of new electrochemical energy storage capacity by applications, in 2017, behind-the-meter energy storage made up 59% of the total of new applications.  Renewable integration came in second at 25% of the total new applications.

Energy Storage Provides New Energy with “Value-Added Services”

As the use of New Energy sources continues to increase, the energy structure faces a transformation.  In the future, as solar, wind, hydro, and other New Energy sources occupy a major portion of China’s energy supply, energy storage will be an important part of the country’s entire energy industry. In recent years, China has promoted multi-energy systems, wind+storage/solar+storage, and other demonstration projects.  Energy storage not only contributes to a more effective use of energy, decreasing wind and solar curtailment, it can also stabilize power generation, increase the quality of electric energy, and contribute to the balancing of grid loads.

Take solar PV as an example.  In its earliest stages, the manufacturing costs for solar PV were high, and companies focused most of their efforts on lowering such production costs and technology R&D.  With the maturation of the market and technological breakthroughs, solar energy manufacturing costs fell rapidly, bringing about opportunities for energy storage.  Energy storage can help to improve the quality of PV electricity and ease pressure on the grid.  Currently, there are many solar+storage projects in operation which help to prove through practice the value of energy storage in new energy grid integration.

Once such project is located in Shaanxi.  In 2017, Shaanxi Province’s Dingbian County achieved a total installed PV capacity of 1500MW.  In 2016, the county’s solar curtailment rate was near 10%.  The 10MWh Dingbian Li-ion battery system’s load shifting program brought relief to the curtailment issue.  The project utilized Dynavolt’s MW-scale container-style battery module technology.  Operating in conjunction with the PV station, the battery absorbs excess power, activating based on PV power prices, providing load shifting services and contributing to use of local power.

Marketization is the Outlet for Energy Storage in the Grid

The five stages of the power system—generation, transmission, transformation, distribution, and end use—all can experience the value of energy storage.

In electricity generation, energy storage can participate in ancillary services such as frequency regulation and peak shifting.  However, China’s ancillary services market is still in an exploratory stage, and questions such as proper pricing and transaction mechanisms have not yet been resolved.  While some companies have implemented frequency regulation projects, many energy storage enterprises planning to join the ancillary services market are still waiting and watching the market from afar. At present, the most frequent approach to frequency regulation is through energy storage combined with thermal generators.  As individual regions build their own ancillary services markets, energy storage in the form of peak shifting and frequency regulation has a strong chance at commercialization.

Amongst energy storage in ancillary services projects, Beijing Ray Power has created a combined energy storage and thermal generator system which functions as a new frequency regulation source that not only resolves the slow adjustment time, delays, and potential for errors of traditional thermal generators, but also removes the difficulty of adding frequency regulation to the grid due to energy (KWh) limits on energy storage. One example is the Jinneng Group’s 9MW solar-thermal power plant in Shanxi that links energy storage with frequency regulation.  The system relies on a thermal generator coupled with a 9MW/4.5MWh energy storage system. The remodeled generator system has an improved AGC frequency regulation performance factor Kp of nearly 5.0.  The energy storage system’s round cycle efficiency is nearly 88%, while the power plant’s AGC frequency regulation compensation helps create profit, bringing great benefit to the company.

The transmission and transformation side of electricity is unlikely to see energy storage applications in China.  The size and relative staunchness of the Chinese power grid in comparison to those of other countries means that energy storage opportunities in China’s transmission and transformation will be unlikely for the next few years.

Power distribution, as many know, is one of the weaker components of China’s power system.  One example is Guangdong, where numerous areas of the province have suffered from low voltage problems in distribution and transformation, leading to significant customer complaints.  Such incidents brought energy storage into focus.  However, according to insider information, the cost for a new energy storage system would be at least twice as much as that for transformer and line upgrades.  Such costs are a difficult challenge for energy storage, but if over time the costs of energy storage batteries decreases, power distribution is certain to be a large market for energy storage.

Behind-the-meter energy storage made up the majority of 2017’s new energy storage capacity in China.  No matter if used for load shifting or demand management, the value of behind-the-meter storage has already been proven.  From the point of view of businesses, the most common profit point lies in energy arbitrage.  Yet relying completely on arbitrage is not enough to bring out the complete value of energy storage.  Even extremely low costs will not be enough to bring out the best regulatory functions of energy storage.

Narada Power’s smart energy storage power station at the Wuxi-Singapore Industrial park serves as a demonstration of energy storage capabilities.  The station is powered at 20MW, and total capacity of 160MWh.  The facility is currently the world’s largest commercialized energy storage power station in operation.  Each day, the facility can provide the industrial park with 20,000KVA of load adjustment during peak periods, lowering the burden on the industrial park’s substations and transformers and eliminating the need for transformer upgrades.

Second-Life Usages for EV Batteries are Another Driving Force for Energy Storage


In 2017, over 777,000 new energy vehicles were sold.  According to predictions, China will soon be facing a large wave of battery retirement.  China has already released a number of policies to stimulate the development of the battery retirement industry.  Recycling of retired batteries can be done in one of two ways, either through disassembly of the battery or through second-life applications.  Second-life applications have several advantages.  Currently, the cost of new battery production is high, a major factor limiting the widespread deployment of energy storage.  Second-life usages help lower the initial construction costs for energy storage systems, while at the same time being environmentally friendly and having a positive socioeconomic value.

In recent years, many domestic and international agencies have undertaken second-life applications research.  In China, there have been three main industry groups that have engaged in such research.  The first is electric vehicle manufacturers, such as BYD and BAIC BJEV.  The second group is energy storage customers, such as China Tower and grid companies.  The final group is third-party energy storage groups such as Shanghai GMDE.  Internationally, the main participants in second-life battery research are car manufacturers.

Second-life EV battery projects have already been successfully launched in China.  In February 2018, Shanghai NIO completed construction of two second-life energy storage power stations.  Beijing Pride Power complete a MWh-level second-life battery system, the first application of its kind in China.  The system uses retired vehicle battery packs (lithium-iron phosphate batteries), a bidirectional PCS, and connects to the end-user distribution network through a low-to-medium voltage distribution room.

Second-life applications can lower the investment costs of new projects and shorten the return period.  Although many companies have already become involved in second-life applications, there are still many areas that require exploration and improvement:

1.       Safety Considerations – early model batteries suffer from relatively low performance and were not designed with recycling in mind.  Designs also vary greatly in size and parameters, and it can be difficult to trace complete information on the batteries.  These and other concerns create large safety issues for second-life battery usages.

2.       Technological Considerations – second-life EV batteries must go through testing, disassembly, reassembly, and other stages.  Currently, the testing process suffers from a lack of advanced technology and standards.  Most testing is done by hand, and early stage batteries do not have a unified standard for testing, creating difficulties in the reassembly of batteries.

3.       Cost Considerations – EV battery disassembly, testing, and reassembly cost a great deal in resources and manpower.  Without developed technologies for such processes, many companies face added costs for second-life battery projects.

As EV battery retirement increases, and with the support of national policies, second-life batteries are destined to become a thriving market.

Increased policy support and continued research breakthroughs lowering the cost of energy storage are helping to develop the energy storage industry in a positive direction.  Whether in microgrids, ancillary services, spot markets, or any other field, the future of energy storage looks bright.

Ukrainian Parliamentary Delegation Visits Chinese Academy of Sciences to Discuss Energy Storage


On May 8th, 2018, the China Energy Storage Alliance and Chinese Academy of Sciences warmly welcomed a group of delegates from the parliament of Ukraine for a visit to the Chinese Academy of Sciences Institute of Engineering Thermophysics research base in Langfang, China.  The visit included a tour of the research base’s compressed air energy storage system, followed by presentations and a roundtable discussion.  The event was co-organized by the China National Complete Engineering Corporation and the China Energy Storage Alliance.  CNESA member organizations including vice chair member Shoto Group, Ray Power, Puneng Energy, ZTT, and Sungrow-Samsung were in attendance to meet and discuss with the delegation.


The Ukrainian delegation was led by Mr. Oleksandr Dombrovskyy, Vice Chairman of the Committee on Fuel and Energy Complex, Nuclear Policy and Nuclear Safety of the parliament of Ukraine.  Mr. Dombrovskyy was accompanied by four additional parliament members as well as a delegate from the Ukrainian embassy.  The purpose of the event was to help the Ukrainian government understand China’s energy storage industry and to introduce the Chinese energy storage products and technologies that are currently available. The meeting also helped the Chinese companies in attendance to understand the Ukrainian energy system and the market potential for energy storage in Ukraine.

The initial tour of the compressed air storage system was led by Dr. Zhang Xinjing, who introduced the system to the delegation and answered their questions regarding the technology.  The tour was followed by presentations and discussion.  China Energy Storage Alliance General Secretary Liu Wei delivered a presentation introducing the development of the global energy storage industry.  Dr. Tang Xisheng, General Manager of Shoto Group, introduced his company’s lead-carbon battery technology and its applications.  Guo Jintao, New Energy Products Sales Manager for ZTT’s International Division, delivered a presentation on his company’s Li-ion batteries and their applications.  The final presentation was delivered by Dr. Zhang Xinjing, who first provided an introduction to the Chinese Academy of Sciences Institute of Engineering Thermophysics before describing the development of compressed air energy storage research.  The meeting concluded with a Q&A session between the Chinese and Ukrainian guests.


This initial meeting served as a starting point for what is sure to be further cooperation and exchange in energy storage between Ukraine and China.  Both sides hope to continue to work closely to find ways in which China’s energy storage technologies and resources can contribute to the development of Ukraine’s energy system.

International Energy Storage Alliance Founding Ceremony Held at ESIE 2018

On April 2, the official founding ceremony for the International Energy Storage Alliance was held at the National Convention Center in Beijing.  The INESA is led by the Chinese Academy of Sciences Institute of Thermophysics and is supported by the Birmingham University Energy Storage Center, the China Energy Storage Alliance, and other international energy storage technology research bodies and industry groups.  The founding ceremony, co-sponsored by the Chinese Academy of Sciences Institute of Thermophysics and the China Energy Storage Alliance, received support from the Chinese Academy of Sciences International Cooperation Department, the Beijing Science and Technology Cooperation Center, and the China Energy Research Society.  Over 300 representatives from government, industry, and research institutions were in attendance for the ceremony.

 China Energy Storage Alliance Chief Supervisor Zhang Jing Hosts the Foundation Ceremony

China Energy Storage Alliance Chief Supervisor Zhang Jing Hosts the Foundation Ceremony

 International Energy Storage Alliance Chairman Chen Haisheng Delivers Welcome Address

International Energy Storage Alliance Chairman Chen Haisheng Delivers Welcome Address

The INESA foundation ceremony was hosted by CNESA Chief Supervisor Zhang Jing. INESA Secretary General and Chinese Academy of Sciences Institute of Thermophysics Vice Director Chen Haisheng provided the initial welcome remarks, speaking on the alliance’s background, goals, and development plan.  The Chinese Academy of Sciences International Cooperation Department International Organizations Office Director Feng Kai delivered heartfelt congratulations to the INESA on its founding and praising the Chinese Academy of Sciences for its efforts.  Her speech also emphasized the Chinese Academy of Sciences' pledge to increase support for energy storage technology research and industry development, foster the growth of the INESA, contribute to the global spread of green energy, lessening of air pollution, and battling of climate change.

 China Energy Research Society General Secretary  Zheng Yuping Delivers a Speech

China Energy Research Society General Secretary  Zheng Yuping Delivers a Speech

 Chinese Academy of Sciences International Cooperation Department International Organizations Office Director Feng Kai Delivers a Speech

Chinese Academy of Sciences International Cooperation Department International Organizations Office Director Feng Kai Delivers a Speech

China Energy Research Society General Secretary Zheng Yuping delivered a speech on the industrialization of energy storage technologies and research, highlighting the use of energy storage for reduction of emissions and adding renewable energy to the grid.  As China's energy think tank, the China Energy Research Society will continue to support the energy storage industry, and provide as many resources as possible to support the International Energy Storage Alliance.

Chinese Academy of Sciences Institute of Thermophysics Director Zhu Junqiang followed with a speech on behalf of the Institute of Thermophysics welcoming the experts and leaders in attendance and expressing gratitude to the new organizations and experts joining the alliance.  The speech emphasized cooperative activities between INESA members, including collaborative strategies for creating breakthrough technologies around the world, establishment of energy storage demonstration projects, and promoting continued energy storage and renewable energy growth globally.

 INESA Representative Professor Ding Yulong of Birmingham University Delivers a Speech

INESA Representative Professor Ding Yulong of Birmingham University Delivers a Speech

 INESA Representative Gary Yang, Founder and CEO of UET Technologies, Delivers an Address

INESA Representative Gary Yang, Founder and CEO of UET Technologies, Delivers an Address

 The Official Founding of the International Energy Storage Alliance

The Official Founding of the International Energy Storage Alliance

Birmingham University Energy Storage Center Director Ding Yulong, UET Technologies Founder and CEO Gary Yang, and DNV GL Chief Consultant George Garbandic also delivered speeches congratulating the foundation of the INESA and expressing support for continued progress towards its goals.

Introducing CNESA’s “ES Research” Products and Services


Since 2011, the China Energy Storage Alliance’s research department has been focused on energy storage industry research and information consulting services.  After seven years of experience researching energy storage development and tracking industry trends, CNESA’s research department is proud to officially announce its “CNESA ES Research” brand, providing specialized energy storage research products and services.

ES Research includes four product and service types, including the Global Energy Storage Database, Energy Storage Industry Tracking, Special Reports on the Energy Storage Industry, and the Research Consulting Service.  Of these products, the Global Energy Storage Database and Energy Storage Industry Tracking are featured on the official ES Research website: Below is an introduction to each service:

The Global Energy Storage Database: the Global Energy Storage Database is divided into five separate categories: the Energy Storage Project Database, Energy Storage Policy Database, Energy Storage Manufacturer Database, Market Data Analysis, and Global Energy Storage Market Tracking

  • The Energy Storage Project Database features a continuously updating collection of global energy storage projects, providing data on location, scale, technology type, application type, and other detailed information.  As of the end of 2017, over 1500 energy storage projects were collected in the database. 
  • The Energy Storage Policy Database focuses on the development of the Chinese energy storage industry, collecting not only national and regional policies related to energy storage, but also tracking policies related to electricity reforms, renewable energy use, new energy vehicles, demand-side management and other related policies, as well as energy development plans related to the storage market environment or with potential storage opportunities.
  • The Energy Storage Manufacturers Database collects global manufacturer information from all segments of the industry chain, including providers of key technologies--such as energy storage units, management systems, inverters, and systems integrators--as well as constructors, project developers, operations managers, battery recyclers, and other members of the energy storage applications chain. 
  • The Market Data Analysis service is based on tracking of global energy storage capacity, providing continuous updates on the scale of markets in China and around the world, categorized by technology, application, country, and city/region, and providing a detailed statistical breakdown and analysis.

Using the data collected from the four services above, the CNESA research department also publishes the quarterly Global Energy Storage Market Tracking Report, providing a comprehensive analysis of the most recent market developments in China and around the world.


Energy Storage Industry Tracking: ES Research’s Energy Storage Industry Tracking follows energy storage industry developments in four categories: project, manufacturer, policy, and research.  The project category helps customers understand the most up-to-date distribution of projects and bidding plans.  The manufacturer category includes information on the most recent product releases, investments, strategic partnerships, production capacity, and other manufacturer activities.  The policy category analyzes domestic and international industry policies and electricity market rules.  The research category consists of predictions from notable research agencies regarding local markets, applications, capital, market developments, and more.


Special Reports on the Energy Storage Industry: CNESA has published its annual Energy Storage Industry White Paper since 2011.  The white paper provides a comprehensive yearly market analysis of the energy storage market characteristics and developments in China and key countries around the world.

Visit to learn more about ES Research products and services.

Chinese Academy of Sciences Visited by U.S. Department of Energy Director of Energy Storage Dr. Imre Gyuk


On January 23, 2018, the Chinese Academy of Sciences hosted a meeting on energy storage with distinguished guests Dr. Imre Gyuk, director of energy storage research at the United States Department of Energy, and Dr. Gary Yang, CEO of UniEnergy Technologies.  Dr. Gyuk and Dr. Yang were met by China Energy Storage Alliance Chairman and the Chinese Academy of Sciences Institute of Engineering Thermophysics Deputy Director Chen Haisheng, China Energy Storage Alliance Deputy Chairman and Beijing Puneng General Manager Huang Mianyan, and CNESA Standing Council Representative and general manager of State Grid Electric Vehicle Service Company Wang Mingcai.

The meeting began with a presentation from Dr. Gyuk.  Dr. Gyuk introduced energy storage technologies, the economics of energy storage, and provided case studies of various energy storage projects across the United States.  Dr. Gyuk’s presentation highlighted the success of peakshaving and load shifting efforts in in California.  He also highlighted the use of energy storage for grid resiliency in areas such as Puerto Rico and Florida, where recent hurricanes have caused severe power shortages.  Dr. Gyuk noted the growth of energy storage projects, predicting a total of 2,045 MW total storage capacity in the United States by 2021.  After the presentation, Dr. Gyuk took questions from meeting members.


Following Dr. Gyuk’s presentation, CNESA chairman and Chinese Academy of Sciences Institute of Engineering Thermophysics Deputy Director Chen Haisheng presented on energy storage market status and development opportunities in China.  The presentation highlighted the decrease in energy storage technology costs, development of policies in support of energy storage, and highlighted project case studies across China.  Deputy Director Chen‘s presentation was followed by a brief discussion before the breaking of the meeting.

The meeting provided an opportunity for information exchange between the United States and China, with attendants learning more about recent energy storage developments and projects of each other’s countries.  The meeting also helped lay the groundwork for future international exchange, such as Sino-U.S. cooperative standardization efforts, project tracking, and more. 


Take Part in the 2nd Energy Storage Innovation Competition


The International Energy Storage Innovation Competition, hosted by the China Energy Storage Alliance, is now open for registration.  The competition, now in its second year, provides a platform for evaluating leading energy storage technologies and applications, highlights examples of innovative models for members of the industry, and honors those who have made outstanding contributions to the field.  The competition is open to companies and organizations from around the world who are involved in energy storage solutions and technologies.


1.      Competition timeline: Dec 25, 2017 to March 31, 2018.

Register between Dec 25, 2017 and Feb 28, 2018 to be considered.

2.      Organizing bodies:

Guiding Organizations: China Association for Science and Technology, National Energy Administration

Host: China Energy Research Society

Organizer: China Energy Storage Alliance

3.      Competition Structure: The competition is open to applicants worldwide and is divided into three awards categories, “Technology Innovation,” “Applications Innovation,” and
Person of the Year”

4.      Registration Method: click the links below to download the official registration forms.  Email completed forms and required materials (as requested on registration forms) to  You can learn more about the Innovation Competition and ESIE 2018 at the official ESIE website here:

Registration Forms:

Applications Nomination Form

Technology Nominations Form

Narada to Deliver "Invest + Operate" Storage Partnerships


China-based lead battery provider, Narada Power, recently announced a cumulative 200 MWh of energy storage investment and operating agreements. In partnership with eight other companies, the energy storage systems target demand side management applications, peak shaving, power quality, and load stabilization applications.

Partner System Size
Tiazhou Cultural Innovation Industrial Committee 48 MWh
Jiangsu Changfeng Paper Industry Co., Ltd. 40 MWh
Jiangsu Xitang Industries Co., Ltd. 36 MWh
Zhenjiang EcoChemcial Electroplating Technology Co., Ltd. 24 MWh
Suzhou National Environmental Protection New Technology Industrial Park Development Co., Ltd. 16 MWh
Southern Red Bean Holding Company 16 MWh
Wuyi City Yishun Machinery Manufacturing Co., Ltd. 12 MWh
Wuyi Changsheng Property Management Co., Ltd. 8 MWh
Total 200 MWh

The projects above are part of Narada’s “invest + operate” business model first launched in 2016. Similar to Green Charge Networks' business model, Narada provides all equipment and installation, and shares the earnings with host partner. At present, Narada has entered storage agreements totaling over 2.1 GWh (including the 200 MWh above), with 120 MWh already in operations. According to Chinese Battery Enterprise Alliance, Narada has already set aside CNY2 billion (US$300 million) in funds for battery projects. In the first half of 2017, Narada has already collected CNY133 million (US$20 million) in sales revenue, of which energy storage projects have accounted for CNY79 million (US$11 million) in sales.

The announced projects total CNY260 million (US$38 million) in investments from Narada, and upon completion expect to have a massive impact on future earnings.

  Data: CNESA project database, CNESA White Paper 2017.

Data: CNESA project database, CNESA White Paper 2017.

CNESA Alliance member Narada Power, a Hangzhou-based company founded in 1994, specializes in high-performance lead-based batteries for use in telecom, electric power systems, infrastructure, and renewable energy applications. According to data published in CNESA's 2017 White Paper, Narada currently ranks 6th in China’s top 10 storage providers in terms of kW of storage in operation (2016 data). While the top providers are dominated by Li-ion manufacturers, the Sacred Sun (no. 2) also specializes in lead based batteries. With improved battery technology and performance, lead batteries have maintained a cost advantage over Li-ion alternatives, and today represent 31% of China’s total installed electrochemical storage capacity.

Lishen Enters 21700 Li-ion Field With New 15 GWh Suzhou Production Facility

During a press release on July 20, 2017,  CNESA alliance member and Li-ion manufacturer, Suzhou Lishen, announced that operations have begun at a recently completed 353,000 sq. meter facility with a planned yearly production capacity of 15 GWh. Suzhou Lishen is a subsidiary of the Lishen group based in Tianjin, China.

The company’s East China production base is a central focus point in the company's “13th Five Year Plan” strategy, which includes plans increase production capacity for Li-ion batteries used in electric vehicles. The total project investments total over CNY5 billion (US$7.5 million) 

Suzhou Lishen invested CNY2.1 billion over the first two stages of the project, constructing a production capacity of 4 GWh. On April 15, 2016 construction began, with operations beginning on July, 20, 2017. It is China’s first domestic facility to manufacture the 21700 format Li-ion batteries.

Lishen’s 21700 format batteries have four main advantages when compared to the traditional 18650 batteries. The monomer energy density is higher, the battery system costs are lower, the total batter casing is lighter, and its overall easier to automate production. In addition to this, the Lishen 21700 have three core design features:

  1. An entirely new physical composition battery cover that ensures consistent performance and minimizes the safety risks associated with voltage leaks
  2. The battery casing uses nickel-steel pre-plating, putting an end to the need to produce metal powder, overall reducing battery self-discharge
  3. Quadrapole structure allows for super high power discharge and high performance.

During the press release, Lishen unveiled the 21700 series products, suitable for a range of vehicles including hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electricity vehicles. At the same time, the battery series products can satisfy the power requirements for 12V start-stop systems as well as 48V micromixing systems. Lishen has entered into agreements with 10 domestic suppliers for parts and components, with total purchasing plans exceeding CNY5 billion.

Draft Standards Released for Energy Storage with Wind/PV Plant Design

China’s Ministry of Housing and Urban-Rural Development (MOHURD) this weekend released a draft standards proposal for grid-connected wind and solar + storage plant design where storage is installed in conjunction with either wind, solar, or wind-solar hybrid plants. The proposed standards would apply to all new construction, expansions, and renovations to wind and solar generating assets rated at 10 MW and above designed with accompanying electrochemical storage equipment. The standards do not require all wind, solar, and wind-solar hybrid plants to include storage, but instead guide the design of facilities constructed with storage in mind.

The standards, based from the results of various optimization tests, make the following recommendations based on the principal application of the storage resources. 

  1. Output smoothing mode: for storage assets used to correct for sharp fluctuations in wind and/or solar output. Installed storage should be no less than 10% of generation power with discharge capacity no less than 0.5 hours. 
  2. Output tracking mode: for storage assets used to aid wind and/or solar plants meet the power dispatch commitments. Installed storage should be no less than 30% of generating power with discharge capacity no less than 1 hour. 
  3. Frequency regulation mode: to regulate generation output frequency. Installed storage should be no less than 20% of power generation rating. No discharge time standard provided. 
  4. Peak shaving/valley filling mode: further recommendations will be made based on grid needs. 

Comments for the proposed standards are requested to be submitted before July 28, 2017. It is not yet clear whether the proposed standards will be legally binding are provided instead as design guidelines.

Australia, meanwhile, after recently announcing plans for a 129 MWh Li-ion battery system as part of a wind farm in South Australia, is considering similar standards for renewable generation-sited energy storage. Minister for the Environment and Energy, Josh Frydenberg, recently proposed a “generator reliability obligation” suggesting  25% capacity and 4 hours of storage as guideline, conceding the exact figure would ultimately be up to the Australian energy market operator, AEMO.

China's NEA Calls for Energy Storage in Peak Services, DER

On February 10th, the NEA released its “Guiding Opinions on Energy Development for 2017” (2017年能源工作指导意见). In the context of broader targets laid out in the 13th Five Year Plan, the document represents a more detailed outline of development goals for 2017. In particular, the "Guiding Opinions" fleshes out the main tasks and goals for subordinate agencies to implement over the upcoming year, in line with the CPC’s strategic "energy revolution" initiative promoting a coordinated international cooperation advancing energy supply, systems, technology and consumption known as“Four Revolutions, One Cooperation" (四个革命、一个合作).

"Guiding Opinions" mentions energy storage several times as a key technology to develop in the upcoming year. In particular, the NEA identifies energy storage in the following sections:

"Strengthen and Reinforce Weaknesses in the Energy System"

The NEA calls for the need to increase peaking services and increase the grid system’s operating efficiency, through ameliorating power infrastructure bottlenecks and optimizing system-wide adjust-ability and flexibility.  To this end, the NEA promotes establishing an ancillary services market and compensation system along with accelerating the use of natural gas peaker plants. They also call for increased trials in fast-response coal power equipment, and promote continuing energy storage project demonstrations.

"Upgrade Energy Technology Equipment"

In this section the NEA identifies key technologies such as nuclear, renewable energy, shale gas, coalbed methane, gas turbines, and high temperature materials used in offshore oil and gas exploration. Additionally, they propose increase application of thermal solar storage uses and large-scale storage systems in conjunction with distributed energy systems.

The NEA also raises the need for establishing a strong standards body to guide the emerging “Internet+” Smart Energy field, electric vehicle charging, solar power generation, and energy storage industries.

"Social Welfare"

As part of energy substitution methods to decrease pollution and quality of life, the NEA mentions the need for improvements in peak and off-peak electricity pricing mechanisms in conjunction with encouraging adoption of energy storage and heat storage.

"Specific Engineering Tasks"

While this section consists of numerical targets implementing gas peaker plants, pumped hydro stations, and inter-province transmission and distribution tasks, the NEA is more cautious with energy storage, where instead of setting a numerical capacity mandate, rather lists off several key projects under construction with plans to finish within the year.


The 2017 "Guiding Opinions" in contrast with the the 2016 edition does not mention specific battery chemistries but sets more specific goals including the call for a standards body, and a more clearly defined potential and need for energy storage in peaking services and distributed energy resources. The 2016 edition called for developments in large-scale energy storage, in particular for all vanadium redox flow batteries, but was less clear regarding the role energy storage can play in the grid. Compared to 2016, the 2017 "Guiding Opinions" does show some evolution of the NEA's thinking regarding the technology. This year, a "Guiding Opinions" focused specifically on Energy Storage development is also expected. 


CNESA Co-hosts Forum on Storage Pricing

December 10, 2016 - CNESA, in collaboration with the Beijing Energy Club alongside the Asia Development Bank, hosted the international forum: “Energy Storage Pricing: Method and Mechanisms.” Hearing from both Chinese and international experts in power and storage markets, the forum served to illuminate storage investment and accompanying policies as well as viable business models in some of the world's principal markets. Speakers also discussed applications in the Chinese market with potential storage pricing policies and mechanisms under China’s power system marketization reforms.

Morning sessions were devoted to international perspectives on storage pricing mechanisms. Janice Lin of Strategen Consulting introduced the American market and various pricing and government-backed incentive schemes underway across the nation. Heiko Staubitz, of Germany Trade and Invest, introduced the German renewables market and major economic drivers behind storage profitability. Goran Strbac from Imperial College London, presented his research on power systems markets and Naoki Sakai with the Asian Development Bank introduced storage pricing in Japan.

The afternoon session was headed by Chinese speakers including CNESA Secretary General Tina Zhang, delivering her thoughts on energy storage and China’s 13th Five Year Plan, along with the National Development and Reform Commission head of the Pricing Institute Liu Shujie spoke on an energy storage demonstration project in Dalian, Liaoning Province along with preliminary insights into setting Energy storage pricing mechanisms. Over 160 industry representatives, government officials, and researchers were in attendance.

Sunday, following the forum, members of organizing committee visited CNESA Alliance member, Rongke Power's energy storage R&D and production center.  Rongke's storage division, founded in 2008, is one of the world's leading vanadium flow battery solutions providers. Rongke Power serves as a core member of the Chinese Academy of Sciences Dalian Physical Chemistry Research Institute. Beginning research into vanadium flow battery technology in 2000, the company has grown with over 30 technology projects located across China, Europe and the United States today. 

Li Keqiang Calls for Breakthroughs in Storage Technology

Chinese Premier, Li Keqiang, who also serves as Chairman of the National Energy Committee, recently emphasized the central role of transforming energy production and consumption in sustainable development at an NEC meeting on November 17, 2016. Premier Li highlighted the need for breakthroughs in energy storage technology to effectively exploit China’s rapidly growing renewable energy capacity.

The National Development and Reform Commission (NDRC), National Energy Administration (NEA), National Energy Committee members, and other experts shared reports on their research. Premier Li, who presided over the meeting expressed the following, giving a view into the policy direction and priorities of the Communist Party. Li expressed that energy strategy is the pillar behind national development. At present, considering rapid changes in energy technology and changes to the global composition of energy supply and demand, China, as one of the world’s major energy exporters and consumers must capture the new opportunities. Li indicated that the Party will work to implement practical development plans, with supply-side reforms as the central theme. In all, the government aims to increase China’s competitiveness in the global energy industry, constructing clean, low-carbon, safe, and efficient energy systems, to support China’s continued stable and sustainable economic development.

Sustainable energy development, Premier Li continued, relies on technology innovation and system reforms. He called for concentrated efforts to develop and exploit renewable energy resources, especially by way of grid integration, storage technologies, and breakthroughs in microgrid research. Through the Internet of Things construction of the “Internet+” and smart energy, China will upgrade the grid system adjust-ability, increase consumption of alternative energy sources, and develop highly advanced and efficient technology. Li expressed the need to actively encourage entrepreneurship, innovation, and the founding of new energy technology companies. While intensifying reforms in energy-related State Owned Enterprises, Li also signaled support of privately run enterprises entering the energy sphere. Such support can be achieved through marketization reforms, simplifying the regulatory processes, and transferring more rights to local governments, along with reforms in oil & gas drilling rights and reorganization of power transmission and distribution systems. Ultimately, the government aims to improve and encourage the development of distributed energy resources related mechanisms and policies, display the impact of market resource allocation, and the role government can play, all to establish a fair and competitive energy market.

To ensure energy security, Premier Li points out that China must take domestic and international concerns into mind, though based domestically, China must also look abroad for international cooperation. Especially in line with the Party’s “One Belt One Road” policy agenda, China seeks to increase international cooperation in production capacity, stregthening national competitiveness in energy equipment exports.

This article has been translated from the original Chinese, available here.

Power Sector Reforms Announced in China’s 13th Five Year Plan

Nov. 7, 2016 China’s National Development & Reform Commission along with the National Energy Administration (NDRC and NEA) jointly released the “13th Five Year Plan for Power Sector Development” marking 15 years since the last time a Five Year Plan was released on the development of China’s power sector. The last Five Year Plan for the power sector was released January 1, of 2001, as part of the “10th Five Year Plan.”

The NDRC estimates by 2020, Chinese electric power consumption will reach 6,800 TWh of electricity, increasing on average by 3.6-4.8% each year. The per capita use is expected to reach approximately 5,000 kWh by 2020. (According to World Bank data from 2014, this is on par with the current per capita rates from nations like Greece, Spain, and the United Kingdom.) With China’s growing needs for power and a 15% renewables target in mind, the plan calls for the following goals to be met over the next five years. 



Add 40 GW hydropower capacity, with total installation reaching 340 GW by 2020.

Wind Power

Increase wind capacity by 79 GW, with total installed capacity of 210 GW by 2020, of which 5 GW will include offshore wind projects.


Add 68 GW of solar bringing total solar capacity to 110 GW by 2020, of which distributed solar will be 60 GW and thermal solar will be at 5 GW


Put 30 GW nuclear power into operation, reaching total capacity of 58 GW by 2020. Due to safety concerns, priority given to construction in coastal regions.


Reach 15 GW of biofuels production by 2020.

Natural Gas

Increase natural gas capacity by 50 GW, by 2020 total capacity will be over 110 GW, with CCHP-coupled technology occupying 15GW.


Cancel/delay construction of coal plants over 150 GW in scale, capping coal generation capacity at 1,100 GW by 2020. Upgrade 420 GW of existing equipment with low-emissions technology, modify 340 GW of equipment to increase energy efficiency, and phasing out over 20 GW of old equipment. By 2020 all coal plants must waste less than 310g/kWh of coal.  

System Upgrades

  • Promote a flexible electric system by increasing load shifting capabilities. Put into production 17 GW of pumped storage, bringing total pumped storage up to 40 GW.
  • In China's North, update 133 GW of capacity with thermoelectric technology and modify 82 GW of equipment with condensing units. Other locations will receive condensing unit upgrades totaling 4500 GW in capacity. After upgrades, the focus will be on increasing load-shifting capabilities by 46 GW, 45 GW in China's North. 
  • Increase transmission capacity by 130 GW to send power from west to east, bringing long-distance transmission capacity to 270 GW by 2020. 
  • Accelerate construction of electric vehicle charging stations, bringing total centralized charging stations over 12,000, and distributed charging stations over 4,800,000. Strengthen smart charging systems to satisfy the needs of China's expected 5,000,000 electric vehicles. 

System Reforms

  • Before the end of 2016, complete a electric power market mechanism. After which, power market trials will begin. 
  • Before the end of 2017, set electricity transmission and distribution prices
  • Ancillary services pilot for China's Northeast began in 2016, once the pilot has matured, an ancillary services market will be implemented nation-wide.
  • Before the end of 2018, establish spot market pilots, with nation-wide implementation by 2020.
  • Before 2020 cancel preferential rights for electricity generators. 
  • By the end of 2018, complete work to cultivate sell-side market competition mechanisms, encourage the launching of new electricity distribution services. 

While the specifics of implementation are left to subordinate government agencies, the power development reform document certainly gives a glimpse at how China's power sector will shape up in the upcoming five years. The renewables targets for solar and wind are considered disappointingly conservative by some advocacy groups, and create uncertainty about China's previously explosive growth in wind and solar power will continue to expand. Despite this, however, the announcement of power sector reforms establishing electric power market mechanisms, spot markets, and ancillary services markets still creates enormous potential for energy storage participation, as CNESA Secretary General, Tina Zhang, explains here and here.


The original document is available in Chinese. 

CNESA Seminars in Beijing, Tianjin

The past two weeks were a busy and rewarding time for CNESA, successfully hosting two conferences.

Beijing, October 20 -- In coordination with Huaneng Clean Energy Research Institute, CNESA co-hosted the “2016 Forum on Applications of Energy Storage in Electricity Generation.” Presentations probed issues like how energy storage can support renewables consumption in electricity generation as well as the commercialization of distributed energy systems.  

Since entering in the “13th Five Year Planning Period”China has implemented several energy sector reforms, in which energy storage has emerged as a crucial technology essential for realizing future energy sector goals and targets. Beginning on the afternoon of the 20th, speeches covered topics such as: energy storage solutions in concentrated solar power generation and consumption, energy storage applications in wind farms, methods for wind power to hydrogen and wind power heating.

Over 150 guests attended, representing government, power companies, storage technology companies, new energy companies, and other related research institutes, all converging for a productive two days of dialogue, networking ,and cooperation. Manufacturers Zhongtian,  CATL Battery, Clou Electronics,  Sacred Sun, and Menshine, exhibited their latest advanced products and energy storage solutions plans. Nearly twenty media representatives also attended. All in all, the meeting was a resounding success, with presenters laying out requirements and steps towards energy storage applications and commercialization, and engaging in meaningful dialogues fostering future cooperation.


Tianjin, November 3 -- As part of the APEC – Asia Pacific Economic Cooperation Forum on Sustainable Development, CNESA co-hosted a seminar titled “Research on Energy Storage Technologies to Build Sustainable Energy Systems in the APEC Region.” With representatives attending from New Zealand, Australia, Hong Kong, the Philippines, the United States, Thailand, Malaysia, Chile, and the People’s Republic of China, the seminar was a valuable platform for APEC member economies to share the status and requirements of energy storage and renewables development in their respective countries.

Cristiano Marantes, representing the New Zealand’s power service provider, Vector, introduced the company’s latest energy storage project located in one of Auckland’s residential neighborhoods. The Glenn Innes project is the first and largest grid-scale battery storage system in the Southern Hemisphere, using Tesla Powerpack battery technology with enough capacity to power 450 homes for 2.5 hours. Igor Skyrabin from Australia National University and Yi Jin from China’s New Horizon Capital both gave presentations detailing their respective research into economic modeling. Government representatives from the Philippines and Malaysia gave presentations regarding their country’s power systems and potentials for energy storage. Gaspar Escobar, representing the Philippines Department of Energy proposed applying energy storage as a way to provide power for many of the country’s small islands off-the-grid. Malaysia’s Paul WK Kiong from the Ministry of Energy introduced Malaysia’s efforts into promoting Malaysia’s electric vehicle manufacturing industry and called for the need for supporting battery technology. Other attendees included representatives from the Chinese National Development and Reform Commission (NDRC) and companies Trina Solar, Shanghai Power and Electric Design Institute, and BYD. Representatives from ABB and EDF were also present.

The Tianjin seminar is the first of three stages in this APEC-funded project. The next stage will invite experts from APEC economies to conduct an energy storage project site visit in February of next year, and ultimately culminate in a final workshop in May of 2017 in Beijing. 

CNESA Unveils New Logo

CNESA continues to uphold our commitment to promoting a clean energy future for China through the development of energy storage technology. As such, we are pleased to announce CNESA's new alliance logo: 

The logo's blue color represents a pure, clean, and stable nature, while the orange battery charging motif nods to our industry members while simultaneously evoking sunlight, energy, and vigor. 

With an updated image, CNESA looks forward to working for China's bright energy future.   

Energy Storage Project Roundup

What exactly is happening in China? The world's highest elevation storage facility began operations, Chinese manufacturer GCL announced plans for a 500 MWh project, and what will be the world's largest Zn-Br flow battery components center was announced, to name a few. CNESA has prepared a roundup of some of China's latest energy storage projects that either came online or were announced this past month. 

Tibet Shuanghu County Renewable Energy Network (Now Operating)

Location: Shuanghu County, Tibet
Companies Involved: Owner: Power Construction Company of China – Northwest Engineering Storage providers: Corporation Clou Electronics Co., Sungrow Power
Key Specs: 13 MW solar PV station, 24 MWh battery storage system, 1.5 km of electricity lines and grid integration system.
Clou Electronics won 3 MW/10.08 MWh in tender for off-grid energy storage and container system (6 total containers) to provide frequency modulation and voltage control for the system. Sungrow Power will provide the entire 13 MW of PV inverters and header boxes, Samsung SDI-Sungrow will provide 7 MW of storage inverters and a 13.6 MWh Li-ion battery system.
Notes: The project, situated in Shuanghu County, Tibet, the world’s highest elevation administrative district, also represents the world’s highest elevation solar project. The project is part of an effort to power the region with a history of unstable electricity service, with residents relying largely on diesel generators and yak butter lamps, along with burning coal for heat during the cold winter months, resulting in negative health impacts on residents. The extreme elevation, high wind speeds, and adverse rain/snow conditions pose immense challenges for weatherizing the energy storage system equipment. Furthermore, the location only experiences an average 80 days per year without frost, thereby severely shortening the construction period.

Kehua Technology Large Scale Off-Grid PV Storage Project (Now Operating)

Location: An oil field in Uzbekistan
Companies Involved: Kehua Technology Co.
Key Specs: 1.2 MW distributed solar PV, 1 MWh lead acid colloid battery system
Design includes inverters, battery container boxes, power distribution equipment. Principal functions: electricity generation and distribution, with Kehua providing system controls.
Notes: System operations are divided into three modes:
1) Solar generation ≥ load requirements: solar PV cells will provide electricity and diesel generators will stop running. The off-grid inverters will convert the solar electricity for use in the oil field and will charge onsite storage batteries.
2) Solar generation < load requirements: [Stage 1]; solar cells and battery storage will provide electricity together. [Stage 2]; When battery charge is low, this will initiate diesel generators to begin providing the oil field with power, solar energy will be used instead for battery charging.
3) No solar generation and insufficient battery charge: diesel generators provide the oil field with electricity without charging batteries. This guarantees that the critical equipment in the oil field can safely and stably continue operations.

Foshan Industrial Park Energy Storage Station (Now Operating)

Location: Foshan Liyuan Stainless Steel Distribution Center, Foshan, Guangdong Province
Companies Involved: Investments from Green Energy Storage Research Institute (a subsidiary of GP Electric Power Group), construction and equipment by Clou Electronics Co.
Key Specs: 1 MW/2.8 MWh storage system used for decreasing peak and increasing off peak consumption
Notes: The Foshan project is one of the first projects completed in the initial round of GP Electric’s "10,000 Storage Stations” project, an investment initiative announced in June of 2016 to build 10,000 energy storage stations across China within the next five years. The project has strict operations standards with a rapid delivery schedule, allotting only 45 days for construction time (including manufacturing and delivery).

GCL Installs New Project and Ramps Up for a 500 MWh Li-ion Battery Product

Location: Zhongneng Silicon Industries Co., Xuzhou, Jiangsu Province
Companies Involved: GCL System Integration Technology Co.
Key Specs: 1.5 MW/12 MWh two-in-one lead-carbon battery/supercapacitor system to decrease company’s peak electricity usage
Notes: Combining supercapacitor discharge and charging speed with the high charge capacity of a lead-carbon battery gives increased benefit with relatively long usage life.
  GCL's E-KwBe currently comes in multiple colors of 2.5 kWh and 5.6 kWh models.

GCL's E-KwBe currently comes in multiple colors of 2.5 kWh and 5.6 kWh models.

GCL has called itself the “One-stop solution for comprehensive energy integration.” With its E-KwBe Li-ion battery model is hailed by many as the biggest threat to Tesla’s PowerWall battery systems (and cheaper too), their motto might be more than just marketing puffery. The Chinese manufacturer recently reached an agreement with the Australian wholesaler One Stop Warehouse to distribute another 1,000 E-KwBe units in October. The first batch of 1,000 units was already successfully delivered to Brisbane in September. Currently E-KwBe comes in 2.5 kWh and 5.6 kWh models. New documents show the company is also in preparations for developing a 500 MWh battery storage project. GCL recently raised nearly US$500 million in capital, of which it will siphon US$14.5 million into the the 500 MWh project. Total project investment for the 500 MWh project is estimated to be US$26 million, and is expected to take a year to complete. 


China’s First Off-Grid Solar + Storage EV Fast Charging Station (Now Operating)

Location: Dongguan Yujia Industrial Park, Dongguan, Guangdong Province
Companies Involved: Designed by Beijing Juneng Photoelectric Technology Co.
Key Specs: Solar PV station will generate around 80 MWh daily, the storage station will have a capacity of 20 kW/100 kWh
Notes: High voltage DC electricity from the PV will charge the Li-ion battery storage system, and high voltage DC will also provide charge for electric vehicles. Taking the Beijing Automobile Works EV160 model electric car as an example, the car is equipped with a 24 kWh battery. Charging from 30% to 80% capacity requires 12 kWh. On a clear, sunny day, this charging station could charge 6-7 EV160 models, each car requiring 40 minutes charging time.

World’s Largest Production Center for Zn-Br Flow Battery Components Announced in Baoding 

Location: Baoding Zhongguancun Innovation Center, Baoding, Hebei Province
Companies Involved: ZBest Power Co.
Key Specs: Once operations begin, ZBest expects an annual production capacity of 200 MWh of crucial battery components such as membrane separators and electrode plates. The expected annual production capacity of storage systems is 50 MWh.
Notes: ZBest Power is also currently expanding solar PV electric vehicle charging stations in all major cities as well as along the national high way network.

Shuandeng Group Enters Frequency Modulation Market in England

Location: England
Companies Involved: China Shoto Group cooperating with an English partner
Key Specs: The planned storage system will be no lower than 80 MW in scale, providing frequency modulation services. The project will use Shoto’s proprietary high performance all-lead coil battery, which has fast charge and discharge speeds and performs well across a wide temperature range.
Notes: According to Shoto’s CEO, Liu Xiaolu, the company plans to continue its efforts to expand in overseas storage markets.

Sunwoda Distributed Storage Project Announced in Jiangsu

Location: South Ruihaisheng Cable Co., Huai’an, Jiangsu
Companies Involved: Huaian Electricity Supply Company with Sunwoda providing investments and maintaining operations
Jiangsu South Ruihuaisheng Cable Co. providing land and access
Key Specs: The planned 500 kW/10,000 kWh storage system expected to cut Ruihaisheng Company’s yearly electricity costs by US$70,000.
Notes: In Jiangsu Province, the latest figures now stand at 16.58 MWh of storage has been installed, 154.25 MWh currently under construction, and 715.17 MWh of storage plans under discussion.

Zhongtian Distributed Storage Project Demonstration 

Location: Hekou Town, Rudong County, Jiangsu
Companies Involved: Zhongtian Technology
Key Specs: The project aims to construct three-in-one distributed PV, storage, and charging stations in 20-60 homes in Hekou Town. Each home will be equipped with PV integration, smart user controls, and 2-5 kW in storage.
Notes: The project has already accumulated nearly US$6.5 million in investments, and explores applications for energy storage, emergency backup, frequency modulation and peak load shifting, as well as the operational and management requirements for a distributed energy generation/local consumption model. Ultimately the project hopes to achieve zero emissions, zero land use, and zero-distance transmission.

Energy Storage Emphasized in China's Latest Industry Plans

“Made in China 2025” is a policy initiative first released in May of 2015, aiming to comprehensively upgrade the nation's industry in the upcoming decade as China seeks to assume a leading position in global production chains. Soon after the initial release, a “1+X” expansion was announced, with “1” signifying the original document and “X” representing an additional 11 implementation and development guide documents.  On August 20, 2016, the first complete batch of these supplementary documents was released, including implementation guides for the “Big Five Engineering Sectors.”

The “Big Five” includes implementation plans for a manufacturing innovation center, strengthening industry, green manufacturing, smart manufacturing, and high-end equipment innovation engineering. The addition six documents cover themes ranging from human talent in the manufacturing industry, the information industry, the new materials industry, four development plans for the medical industry, developing service model manufacturing, to promoting manufacturing of quality products and equipment.

As these documents provide a clear indicator of the government’s development priorities, CNESA is pleased to report that several technologies in the electricity sector were highlighted in the “Big Five,” including energy storage. Some key elements of the document are listed below:    


Smart grids and renewable resources grid integration

  • Calls for the increase the use of renewable energy, and promotes large-scale renewables sources entering the grid. In particular, calls for research and project demonstrations using wind and solar inverter/converters, allowing wind/solar energy to feed back into the grid.
  • Calls for electricity generation from renewable sources and accompanying big data modeling and research analysis.
  • Calls for the application of cloud computing and the Internet of Things to enable operations and monitoring as well as accompanying research and data analysis of such monitoring systems technologies.
  • Calls for technology breakthroughs in the use of intermittent high voltage DC transmission and DC transmission in offshore wind farms.


High capacity electricity transmission technology & equipment

  • Calls for overall mastery of manufacturing  1100 kV  scale ultra-high vacuum AC transmission equipment.
  • Calls for independent research into earthquake resistant models using AC transformer bushing.
  • Calls for developments in optical fiber sensors for passive optical current transformers.
  • Calls for technology breakthroughs in converter transformer and converter transformer bushing, terminal device, smoothing reactor and DC transmission thyristor valves and other key equipment and parts, demonstration and application of combination of high capacity power transmission project to promote the construction of independent technical equipment.


Smart grid advanced technology equipment

  • With smart grid project construction, calls for the opening of 500 kV/3000 MW flexible DC systems and supporting safety control equipment.
  • Calls for core equipment for the Energy Internet, including advanced energy storage technology and smart transformers, among these goals seeking mastery of manufacturing smart transformers, 3D printing technology, user-end energy management systems as well as research and development into connector equipment technology.
  • To extend the use of smart transformer equipment, calls for inspection and repair of existing transmission and transformer equipment, smart routing inspection of transformer stations, and automation of power distribution.


Electric energy storage and new high power electronics equipment and materials

  • Calls for research and development into 10 MW grade compressed air storage, flywheel storage, high-temperature superconductor storage, high capacity supercapacitor storage, 10 MW scale flow battery storage, all vanadium flow battery storage, high performance lead-carbon battery storage, 25 kV aluminum sodium flow battery units, 100 MV grade titanium acid lithium ion battery storage.
  • Calls for breakthroughs in materials such as SiC and GaN in wide-bandgap semiconductor devices, high voltage/high current switching devices and equipment, high voltage and large capacity solid-state power electronic converters, research and development in high voltage devices and packaging, and drive circuit design technology.


With the release of the implementation plans for the “Big Five,” we can see a priority on research and innovation as China updates its grid, indicating government support of the emerging energy storage industry.

For more information in the original Chinese, click here