Energy Storage

China-UK Hydrogen and Energy Storage Cooperation Forum Successfully Held

Source: CNESA


On October 23, 2025, during the International Forum on Energy Transition, the China-UK Hydrogen and Energy Storage Cooperation Forum was held in Suzhou. The event brought together representatives from energy authorities of both countries, the British Embassy in Beijing, and institutions such as the China Energy Storage Alliance (CNESA) and the China Hydrogen Alliance, along with experts, scholars, and business leaders from the hydrogen and energy storage industries. Participants engaged in in-depth discussions on technological innovation and industrial collaboration in promoting the global energy transition.

Liu Deshun, Director-General of the Department of Energy Conservation and Science & Technology Equipment of China’s National Energy Administration, and Rachel Kyte, the UK Special Representative for Climate, attended the forum and delivered remarks. Other distinguished guests included Greg Dyke, Deputy Director for International Affairs at the UK Department for Energy Security and Net Zero, and Jonathan Bacon, Minister Counsellor (Economic) at the British Embassy in Beijing. They shared insights into the UK’s energy sector development and international cooperation strategies under its net-zero goals.

Experts and representatives from University College London (UCL), the Faraday Institution, CNESA, and the China Hydrogen Alliance, as well as leading companies such as GoodWe, HyperStrong, Trina Solar, bp China, and Johnson Matthey, participated in the forum. Through open dialogue, they contributed professional expertise and practical perspectives to strengthen bilateral cooperation in the energy sector.

In his speech, Liu Deshun emphasized that the global energy landscape is undergoing profound transformation, and developing clean energy and tackling climate change have become a shared international priority. As strategic emerging industries, hydrogen and energy storage play crucial roles in driving energy transition and achieving carbon neutrality. He noted that China’s National Energy Administration remains committed to high-level opening-up. In March 2025, China and the UK signed a Memorandum of Understanding on the Clean Energy Partnership, identifying clean hydrogen and battery energy storage as key cooperation areas. Moving forward, both sides will deepen practical collaboration in hydrogen and energy storage, enhance policy dialogue, advance joint technology innovation and standards development, and promote project implementation and investment - jointly contributing to global energy transition and climate governance.

Rachel Kyte, the UK Special Representative for Climate, stressed that hydrogen and energy storage are strategic enablers of clean, secure, and affordable energy. The UK looks forward to deepening cooperation with China under the Clean Energy Partnership framework to promote the global deployment of hydrogen and energy storage technologies, advancing the global shift toward green, low-carbon development.

Representing Chinese institution, Nina Ning, Senior Research Manager of the CNESA, delivered a keynote speech titled “Latest Developments and Prospects of China’s Energy Storage Market”. Her presentation provided an in-depth overview of China’s energy storage progress, technological breakthroughs, and future trends, offering valuable insights for UK participants.

Aurore Mallon, Head of Battery Market and Investment at the UK Department for Energy Security and Net Zero, introduced the UK’s policy and regulatory framework for battery energy storage. Lu Huan, Dean of GoodWe Solar Academy, shared project experiences of Chinese storage companies entering the UK market. Professor Michael Grubb from University College London discussed the UK’s policy roadmap for commercializing energy storage. Their perspectives offered practical guidance for deepening bilateral industrial cooperation.

A panel discussion moderated by Alex Way, Counsellor for Net Zero and Sustainable Development at the British Embassy in Beijing, explored key topics such as the complementarity of China-UK technology roadmaps, compliance and localization challenges for overseas operations, and market mechanism design. Chinese participants - including Dr. Wang Jinsong, Chief Scientist at the Big Data Center of HyperStrong, and Ge Yufang, Director of Strategy and Operations at Trina Solar’s Overseas Power Plant Division - shared practical insights, while representatives from UK firms such as Arup and Wood Mackenzie provided professional recommendations to enhance China-UK industrial collaboration and support Chinese energy storage enterprises going global.

After the forum, the China-UK Hydrogen and Energy Storage Cooperation Reception was held as scheduled, providing a relaxed business networking platform for guests from both sides. The reception helped participants further connect resources and discuss cooperation in an informal setting, continuing the collaborative momentum of the forum.

The successful convening of the China-UK Hydrogen and Energy Storage Cooperation Forum marks a new stage of deepened collaboration between the two countries in the hydrogen and energy storage fields. As a leading industry service platform, CNESA remains committed to promoting the international development of China’s energy storage industry. Going forward, CNESA will continue to leverage international cooperation mechanisms, integrate industry resources, and provide diversified platforms for policy dialogue, technology exchange, and project collaboration - helping Chinese energy storage companies seize global market opportunities, manage compliance risks, and strengthen localization efforts, while contributing Chinese expertise and strength to the global energy transition.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

CRRC Zhuzhou Institute Helps the Nationwide Largest User-Side Grid-Forming Energy Storage Connect to the Grid!

Source: CRRC Zhuzhou Institute


Recently, the “Wind-PV-Storage” Green Low-Carbon Energy Supply Project of Jingjiang Special Steel Co., Ltd., a National Low-Carbon Metallurgy Technology Research Pilot Project invested by Xinli Era under the CITIC Pacific Energy Co., Ltd., was successfully connected to the grid.

 

As the general contractor for the 120 MW / 240 MWh grid-forming high-voltage direct-connected energy storage system, CRRC Zhuzhou Institute Co., Ltd. applied high-speed rail-grade grid-forming converter technology and system integration expertise to successfully help Jingjiang Special Steel Co., Ltd. create China’s first near-zero-carbon steelmaking demonstration plant, providing an effective model for intelligent, green, and low-carbon transformation in the steel industry.

The project’s completion marks the beginning of a strong partnership between CITIC Pacific Energy and CRRC Zhuzhou Institute in the industrial and commercial energy storage sector.

To meet the project’s fast grid connection requirements, CRRC Zhuzhou, after confirming the technical specifications, completed the full delivery of the 120 MW / 240 MWh grid-forming high-voltage direct-connected energy storage system within 45 days. Working with China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd., they integrated a 36 MW distributed PV system and a 16.8 MW onshore wind power system to provide a comprehensive energy supply. Through the system’s grid-forming energy storage stability and fast-response capability, the project overcame challenges from high-impact steelmaking loads and the strong intermittency of renewable energy, optimizing energy matching in time and space, improving energy coordination efficiency, reducing carbon emissions, and achieving both high-efficiency stable production and green low-carbon goals.

01 Establish a zero-carbon industrial park

Building a resilient microgrid to ensure stable renewable energy supply

 

Upon completion, it will become China’s first grid-forming wind-PV-storage integrated microgrid demonstration project in the steel industry, expected to provide 75 million kWh of green electricity annually, reducing carbon emissions by 62,400 tons. By coordinating wind, solar, and storage with electric furnace loads, the project offers a full-process energy solution, helping Jingjiang Special Steel build a new green and low-carbon brand.

Focusing on continuous short-process electric furnace production, the project deploys grid-forming energy storage at the park level with three main objectives: stabilize power quality, increase the share of green electricity, and ensure continuous production. The park’s grid is structured to be autonomous, grid-connected, and switchable, transforming green electricity from “uncertain supply” to “stable, controllable, and high-quality supply”.

 

02 Technical Highlights

Power quality and renewable energy utilization have become key

challenges for zero-carbon industrial parks

teelmaking, as a typical high-load and high-impact process, demands high grid stability and reliability. Addressing the intermittency and fluctuations of renewable energy is key to achieving high-proportion green power supply. The mismatch between PV, wind power, and load limits renewable utilization, while the energy storage’s power and energy regulation capabilities effectively solve this problem. Grid-forming energy storage becomes an indispensable part of high-quality, high-utilization renewable microgrids.

 

High-voltage direct-connection architecture: breaking the “shackles” of efficiency and cost

 

The high-voltage direct-connected architecture developed independently by CRRC Zhuzhou uses H-bridge module cascades to synthesize 35 kV on the AC side, eliminating transformers, shortening energy paths, reducing system current and line losses, and enabling system cycle efficiency to exceed 92%, which is 6% higher than conventional low-voltage storage. This also reduces civil and equipment investment, adding about RMB 48 million in revenue over the 240 MWh storage system lifecycle.

 

Grid-forming energy storage: microgrid stabilizer

 

Grid-forming energy storage actively generates stable voltage and frequency, effectively combining “stabilizer + independent power supply”. The system provides 3×10-second grid-forming capability, and under high-impact steelmaking load conditions, its direct connection to the grid allows rapid response within 20 ms, providing instantaneous power support and bus voltage stability, ensuring power quality and production continuity.

 

Performance leap: millisecond-level grid connection/disconnection and 10-second black start

 

High-voltage cascaded direct-connected grid: shorter electrical distances and greater overload capacity. The system’s single-unit capacity reaches up to 45 MW. In the event of an external grid outage, it can achieve millisecond-level smooth grid connection / disconnection within 100 ms, forming an independent and stable high-voltage microgrid. It also features a 10-second rapid black start, requiring no external grid support, allowing the system to autonomously establish a stable high-voltage microgrid and restore power within seconds, ensuring uninterrupted, loss-free operation of high-load steel production lines.

 

Integrated source-grid-load-storage platform, unlocking 100% potential of grid-forming energy storage

 

The integrated source-grid-load-storage platform provides a framework that is observable, measurable, adjustable, and controllable, optimizing charging and discharging strategies based on weather and output forecasts. Local green electricity utilization is increased from below 70% to over 95%, with annual additional green power benefits exceeding RMB 10 million. In abnormal conditions, the platform triggers safety mode for rapid grid-forming switching. Full-state awareness and strategic dispatch of the storage system reduce manual intervention by over 90%, simplifying operations and maintenance.

03 Multiple Benefits and Industry Breakthroughs

Grid-forming energy storage releases multiple values including capacity,

regulation, and power quality

 

The revenue structure is clear: it can increase green power utilization by 168 million kWh annually, reduce downtime and equipment wear, and generate additional benefits through green power trading and certificates, turning electricity from a cost center into an asset operation.

The next step is to integrate the park into virtual power plants for power market participation, releasing value in capacity, regulation, and power quality in a new-type power system that emphasizes system stability.

 

The Jingjiang Special Steel model: grid-forming energy storage empowers high-energy-consumption parks for zero-carbon transformation

 

In the near future, the Jingjiang Special Steel experience will be replicated across more industrial parks to strengthen capabilities in “park autonomy + multi-energy coordination + carbon accounting”. High-energy-consumption parks will be efficiently and reliably served through the “three-piece delivery suite” of standardized hardware combinations, scenario-based control strategies, and park-level dispatch interfaces. With more advanced energy storage system architectures and technologies, power quality and system resilience will be developed into tradable resources. Grid-forming energy storage helps microgrids reduce dependence on the main grid and, through the source–grid–load–storage–carbon coordination, enables dynamic capacity expansion, local autonomy, and high renewable energy utilization, becoming key infrastructure for industrial zero-carbon transformation and power grid modernization.

 

Pioneer of Grid-Forming Energy Storage: CRRC Zhuzhou Institute’s Experience and Vision

 

CRRC Zhuzhou Institute has successfully leveraged its extensive expertise in high-voltage converter design, multi-level converter topology development, and over 20 years of engineering experience with high-voltage conversion equipment in the rail transit sector to the energy storage field. This led to the launch of the grid-forming high-voltage direct-connected energy storage system, achieving seamless technological integration from the “heart of rail transit” to the “backbone of energy storage”.

As of September 2025, CRRC Zhuzhou’s grid-forming energy storage systems have reached a cumulative grid-connected capacity of 3 GWh and a contracted capacity of 5 GWh. Landmark projects such as the world’s first high-altitude grid-forming storage station in Ali, Tibet, and China’s first user-side high-voltage cascaded grid-forming storage station in Jingjiang, Jiangsu, have successfully demonstrated the company’s ability to provide highly reliable grid-forming energy storage solutions in extreme environments and complex industrial scenarios.

Looking ahead, CRRC Zhuzhou Institute will continue to advance innovation and application of grid-forming energy storage technologies, contributing more key technologies to drive the energy transition and industrial zero-carbon development.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

Guangdong’s First New Energy Storage Power Station Connected to an Offshore Wind Grid Node Started Construction in Xuwen County

Source: Southern Daily


On October 18, construction officially began on the 200 MW / 400 MWh Independent Shared Energy Storage Power Station Project in Xuwen County, Zhanjiang City, Guangdong Province. This marks Guangdong’s first new-type energy storage station connected to a large-scale offshore wind power grid node. The project adopts advanced grid-forming technology to enhance the consumption and flexible regulation of renewable energy, supporting the creation of a system-friendly renewable power station and the development of a new-type power system.

 

Jointly invested by China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd. and Xuwen County Infrastructure Construction Co., Ltd., the project will build a 200 MW / 400 MWh high-voltage cascade all-liquid-cooled lithium iron phosphate (LiFePO₄) energy storage station.

 

This independent shared energy storage station functions like a massive “shared power bank”, capable of serving multiple users. On one hand, it will support the consumption of wind and solar power, coordinating the power transmission needs of offshore wind farms in southern Zhanjiang. On the other hand, it will supply green and zero-carbon electricity for local industrial and residential use. Additionally, it can participate in grid emergency regulation and provide ancillary services, improving the safety and flexibility of the new-type power system.

 

Notably, the project will also strengthen Xuwen’s ability to cope with extreme weather and ensure energy security. Located in a coastal area frequently hit by typhoons and thunderstorms, Xuwen’s power facilities often face severe challenges. The independent storage system will enhance the grid’s resilience, emergency response, and self-healing capabilities, safeguarding lives, property, and the stable operation of the local economy and society.

 

The project is also Xuwen’s first “land-acquisition-to-construction” fast-track project. To ensure efficient implementation, the county government coordinated relevant departments to conduct parallel approvals, expediting the entire project process. On the same day, it issued four key permits - the Land Ownership Certificate, Land Use Planning Permit, Construction Planning Permit, and Construction Permit - and achieved financing disbursement, pressing the “fast-forward button” for project delivery and construction.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

107.12 MW / 428.48 MWh! China’s Largest User-Side Energy Storage Project Expected to Be Completed by Late November

Source: Guangyuan Economic and Technological Development Zone


Recently, construction of China’s largest user-side energy storage project - the 107.12 MW / 428.48 MWh Guangyuan Zhongfu & Guangyuan Linfeng User-Side Lithium Battery Energy Storage Project in Sichuan Province - has entered its final phase. Since construction began on July 30, 2025, all work has proceeded steadily according to plan, with full efforts now focused on achieving the completion target of November 30.

The project is jointly developed by Great Power, a leading company in the energy storage industry, and Henan Zhongfu High Precision Aluminum Co., Ltd (Zhongfu Aluminum), a top enterprise in the aluminum sector. Located only 210 meters from Zhongfu Aluminum’s plant, the project directly connects to the 10 kV power distribution system, significantly reducing transmission losses and improving energy efficiency. It is linked via cables to two 220 kV substations in the industrial park and operates on a “charging during off-peak, discharging during peak” model, with a maximum charge/discharge power of 107 MW and a total capacity of 428.48 MWh, allowing for 4 hours of full charge and discharge per cycle.

Once operational, the project will not only reduce electricity costs and enhance power reliability for Zhongfu Aluminum, but also help the power grid with peak shaving and load balancing. According to plans, Phase II of the project construction will expand the system to 400 MW / 1,000 MWh, along with the construction of a new 220 kV substation, wind and solar power facilities, and EV charging stations. Ultimately, the project aims to establish an integrated “generation - grid - load - storage - charging” regional microgrid in Guangyuan, Sichuan province, providing a practical model for China’s power market reform and carbon neutrality goals, while injecting green momentum into the city’s economic and social development.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

EASE Rebrands as Energy Storage Europe Association for Era of ‘Unprecedented Growth’

Source: Energy Storage News


Energy Storage Europe Association secretary general Patrick Clerens, speaking at the 2025 Energy Storage Summit EU. Clerens' consulting company formed the group with industry stakeholders in 2011. Image: Solar Media.

European Association for Storage of Energy (EASE), which represents 70 member organisations across the industry value chain, has undergone a rebrand.

Now called Energy Storage Europe Association, the change marks “a new chapter for our organisation and the entire sector,” said Patrick Clerens, the group's secretary general, whose consulting group was tasked with launching EASE back in 2011.

“Europe's energy future depends on energy storage. Our new identity will amplify this message to ensure we are at the heart of policy debates,” Clerens said.

Its activities include advocacy in the decision-making processes of European policymakers and regulators; direct participation in European Union (EU) research projects; providing market intelligence, including the European Market Monitor on Energy Storage (EMMES) reports; and networking and media engagement.

EMMES is published annually by the trade association and research consultancy LCP Delta. The most recent edition, EMMES 9.0, found that 11.9GW/21.1GWh of energy storage was deployed across Europe in 2024, including 4.9GW/12.1GWh of front-of-the-meter storage.

Meanwhile, the organisation's advocacy and education efforts include a recent call for common safety standards across European markets and a best practice guide to fire safety for outdoor utility-scale lithium-ion battery energy storage system (BESS) installations.

“In 2025, Europe added new energy storage power capacity at a scale 15 times greater than just five years ago. With this unprecedented growth, a more visible identity was essential to the Association,” Energy Storage Europe Association president David Post said.

“We will continue to represent the entire value chain and all storage technologies, advocating for policies that enable the needed flexibility and strongest deployment across Europe,” said Post, who is also Enel X head of energy storage solutions.

Energy Storage Association Europe's rebrand this week reflects a broader push for increased visibility and stronger representation among industry bodies of late.

The energy storage association is itself part of Europe's Energy Storage Coalition, formed alongside counterparts in the wind and solar PV industry to advocate for a Europe-wide policy action plan on storage.

SolarPower Europe, while a member of the coalition alongside EASE, WindEurope and Bill Gates's VC group Breakthrough Energy, also founded the Battery Storage Europe Platform earlier this year.

That said, Battery Storage Europe Platform is less of a trade association and more of a direct initiative to engage policymakers and regulators, SolarPower Europe said at the July launch.

In the US, the country's only national Energy Storage Association (ESA) merged with a wind industry group in 2021, becoming part of the American Clean Power Association (ACP).

However, ACP then launched its own separate energy storage effort a few weeks ago, called, confusingly enough, the US Energy Storage Coalition.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

Naturgy launches Construction on First Portion of Ten-site, 160MW BESS Portfolio in Spain

Source: Energy Storage News


One of Naturgy’s solar and BESS sites in Spain. Image: Naturgy.

Utility and power firm Naturgy has started building its first BESS projects in Spain, at a ten-site portfolio in Almeria and the Canary Islands.

The company announced groundbreaking on the first four of a ten-site portfolio on 16 October, saying the whole portfolio will total 160MW of power and 342MWh of energy storage capacity, an average duration of 2.13 hours.

The projects will be combined with four solar PV systems. The first battery energy storage systems (BESS) are being added to the Tabernas I and II PV plants in the province of Almería, and the El Escobar and Piletas I in Las Palmas (Canary Islands).

Naturgy plans to have launched construction on all ten by 2026, nine of which are hybridised with PV with one standalone project in Vigo (Pontevedra). It didn’t reveal the size of the four initial projects, which will come online in 2026.

The lithium-ion BESS will reinforce the electricity market in Spain and help to integrate more intermittent renewable energy, and Naturgy is investing €80 million (US$94 million) in them.

The projects are recipients of funding under Spain’s energy storage capex support scheme funded by the EU’s Recovery and Resilience framework, which is funding up to 3.5GWh of projects.

Naturgy’s peer Galp similarly announced the start of construction on BESS projects in Spain (and Portugal) earlier this year, as did Iberdrola in August.

Spain aims to be 81% powered by renewables by 2030, according to the country’s National Energy and Climate Plans (NECP), and energy storage will be key to helping to maintain system reliability and dampen price volatility. The government forecasts that 22.5GW of BESS will be needed by that date.

Spain and Portugal suffered a near country-wide blackout in April this year, which commentators have suggested could have been better mitigated with more grid-supporting and grid-forming technologies, including energy storage.

Naturgy is based in Spain but its first major large-scale activity was in Australia, bringing online the 128MW Cunderdin hybrid solar PV and 55MW/220MWh BESS in Western Australia in early 2025.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

Renalfa switches on 260 MWh battery storage system in Bulgaria

Source: pv magazine


The battery energy storage system is the first phase of a 315 MW/760 MWh system that is being developed alongside 238 MW of solar under Bulgaria’s largest hybrid power project to date, due for completion next year.

Vienna-based independent power producer Renalfa IPP has commissioned the first phase of a large-scale battery energy storage system (BESS) in Bulgaria.

The company has brought online 65 MW/260 MWh of a planned 315 MW/760 MWh battery energy storage system (BESS) as part of the Tenevo Hybrid Renewable Project.

Located in southeastern Bulgaria, the hybrid project is being developed by Tenevo Solar Technology, a joint venture company between Renalfa IPP and Danish developer Eurowind Energy. Chinese energy storage company Hithium and Chinese power solutions provider Kehua are supplying the BESS technology, while Bulgarian developer Solarpro is acting as project manager.

Once completed, the Tenevo project will encompass a 238 MW solar site alongside the 315 MW/760 MWh BESS and 250 MW of wind turbines, making it Bulgaria’s largest and most complex hybrid energy storage project to date. It is due for completion early next year. 

The project is financed by The European Bank for Reconstruction and Development and Raiffeisen Bank International AG. 

In August, Eurowind Energy announced the first 69 MW of the 238 MW solar farm had come online.

According to a statement from Renalfa, the first phase of the BESS is already one of the largest co-located battery storage systems in Europe and takes its energy storage capacity in operation to in excess of 1 GWh.

The company, which is active in Bulgaria, Hungary, North Macedonia and Romania, also claims to have over 1 GW of projects in the late stages of development, as well as a wider project pipeline in excess of 4 GW.

Bulgaria inaugurated a 124 MW/496.2 MWh BESS in May, billed as the largest in the European Union to date. The country’s Ministry of Energy has since launched a public consultation on a new subsidy program targeting 1.9 GWh of standalone storage capacity.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

Beyond the “Five Major and Six Minor”, Third-Party Enterprises Accelerate Their Entry into the Energy Storage Market -- Analysis of the New Grid&Source-Side Energy Storage Projects in September

Source: CNESA

The China Energy Storage Alliance (CNESA) has consistently adhered to standardized, timely, and comprehensive information collection practices to continuously track developments in energy storage projects. Leveraging its long-term data accumulation and in-depth professional analysis, CNESA regularly publishes objective market analyses on installed energy storage capacity, providing valuable references for industry decision-making. Since June 2025, the monthly energy storage project analysis has been divided into two sections: “Grid&Source-Side Market” and “User-Side Market”. This issue focuses on interpreting the grid&source-side market in September.

● Market Continues to Rise: In September, grid&source-side energy storage installations grew by over 180% year-on-year, with independent storage capacity increasing by nearly 340%.

● Regional Highlights: Jiangsu Province contributed the largest share of new installations, with an average duration of 3.84 hours.

● Changing Landscape: Beyond the “Five Major and Six Minor” power generation groups, third-party enterprises are accelerating their entry, capturing 40% of the market share.

● Technological Breakthroughs: Long-duration energy storage is being rapidly deployed, with compressed air energy storage projects accounting for one-fourth of the total.

Overall Analysis of New Energy Storage Projects in September

According to incomplete statistics from the CNESA Datalink Global Energy Storage Database, in Sep. 2025, newly commissioned new energy storage projects in China reached a total installed capacity of 3.08 GW / 9.08 GWh, representing a YoY increase of 166% and 200%, and a MoM growth of 7% and 15%, respectively. New installations totaled 9.16 GW / 25.52 GWh in the third quarter, marking a YoY increase of 10% and 24%. The cumulative new installed capacity for the first three quarters has already reached 74% of the total added capacity for the entire year of 2024, indicating that the total new installations in 2025 are likely to surpass last year’s level.

Figure 1: Installed Capacity of Newly Commissioned New Energy Storage Projects in China, Jan.-Sep. 2025

Data Source: Global Energy Storage Database  of the CNESA DataLink

https://www.esresearch.com.cn/

Note: YoY (year-on-year) increase compares with the same period last year; MoM (month-on-month) decrease compares with the previous reporting period

September Analysis of Grid&Source-Side Energy Storage Projects

In September, newly commissioned grid&source-side energy storage installations reached 2.84 GW / 8.50 GWh, representing a YoY increase of 189% and 226%, and a MoM growth of 15% and 21%, respectively. The new grid&source-side energy storage projects showed the following characteristics:

01. New Installations of Independent Energy Storage Accounts for Over 80%, with Capacity Up Nearly 340% YoY

In September, newly added independent energy storage installations totaled 2.31 GW / 6.73 GWh, marking a YoY increase of 340% and 576%. Projects of 100 MW and above accounted for 64% of the total. Newly added source-side installations reached 492.2 MW / 1,610.9 MWh, up 7.6% / down 0.3% YoY, covering a wide range of application scenarios such as supporting ultra-high-voltage (UHV) DC transmission projects, prevention and control of desertification, and integrated fishery-solar and agrivoltaic projects.

Figure 2: Application Distribution of Newly Commissioned Grid&Source-Side New Energy Storage Projects in Sep. 2025 (MW%)

Data Source: CNESA DataLink Global Energy Storage Database

https://www.esresearch.com.cn/

Note: “Others” include empirical research, etc.

02. East China Accounts for Over 35% of New Installations, with Jiangsu Leading in Scale

 

In September, the East China region added more than 1 GW of grid&source-side energy storage capacity, accounting for 38% of the national total -- the highest among all regions. Among them, Jiangsu Province recorded the largest increase, with independent energy storage projects making up 99% of its new installations. As one of China’s major provinces in both economic output and energy consumption, Jiangsu faces growing challenges in power system regulation. According to State Grid data, the province’s maximum daily power load this summer exceeded 150 million kW (150 GW), and by the end of May, its installed wind and solar capacity had surpassed 100 million kW (100 GW).

On one hand, the high penetration of renewable energy has intensified grid load fluctuations, creating an urgent need to enhance system flexibility. On the other hand, Jiangsu’s power resources and demand are geographically mismatched -- wind and solar generation are concentrated in northern Jiangsu, while electricity consumption is mainly centered in the southern cities of Suzhou, Wuxi, and Changzhou. This regional imbalance between power supply and demand has further exacerbated pressure on power supply during peak demand periods.

In addition, Jiangsu’s average energy storage duration reached 3.84 hours, 0.85 hours longer than the national average for September, reflecting the province’s higher requirements for peak-shaving capability. Nationally, the average energy storage duration in September was 2.99 hours, up 13% YoY and 5% MoM, marking the highest level since 2025. The East China, Northwest China, and Southwest China regions all recorded average durations exceeding 3 hours.

Figure 3: Regional Distribution of Newly Commissioned Grid&Source-Side New Energy Storage Projects in China, Sep. 2025 (MW%)

Data Source: CNESA DataLink Global Energy Storage Database

https://www.esresearch.com.cn/

Figure 4: Provincial Distribution of Newly Commissioned Grid&Source-Side New Energy Storage Projects in China, Sep. 2025 (MW%)

Data Source: CNESA DataLink Global Energy Storage Database

https://www.esresearch.com.cn/

03. Increasingly Evident Diversification of Energy Storage Investors

From the perspective of project ownership, major power generation groups such as China Huaneng, China Three Gorges Corporation (CTG), and China Huadian -- collectively known among the “Five Major and Six Minor” state-owned power enterprises -- continued to maintain a leading position in the energy storage installation market. However, their combined market share declined by 10 percentage points compared with August. Among them, China Huaneng held the largest market share, with several projects such as the Huaneng Energy Base in Gansu Province’s Energy Storage Project Supporing for New Energy and the Huaneng Jintan Phase II Compressed Air Energy Storage Project succeeded in power transmission, contributing a total installed capacity exceeding 1 GW. These large energy groups possess comprehensive advantages in investment scale, project coordination, and operational management.

At the same time, the diversification of investment entities in the energy storage market has become increasingly apparent. In September, third-party enterprises including energy storage and new energy manufacturing companies such as Ganfeng Lithium, Weiteng Electric, and Jinko Power, along with private equity-controlled enterprises, accelerated the deployment of energy storage projects invested and constructed. Projects funded by third-party enterprises accounted for nearly 40% of new installations, an increase of 28 percentage points from August. This growth is mainly driven by the continued expansion of demand in the new energy storage market, government policies encouraging diversified participation in project investment and construction, the emergence of multiple technological pathways, and the decline in energy storage technology costs. With these favorable factors, the market potential of new energy storage has been fully unleashed, attracting a wider range of participants into the sector.

Figure 5: Ownership Distribution of Newly Commissioned Grid&Source-side New Energy Storage Project in China, Sep. 2025 (MW%)

Data Source: CNESA DataLink Global Energy Storage Database

https://www.esresearch.com.cn/

Note: Third-party enterprises refer to those other than large state-owned power generation groups, State Grid, China Southern Power Grid, Power China, Energy China, and local energy groups.

Statistic Analysis by CENSA

04. Long-Duration Energy Storage Technologies Accelerate Deployment

From a technological perspective, lithium iron phosphate (LFP) batteries remain the dominant technology, while long-duration storage technologies such as compressed air energy storage (CAES) are being deployed at an accelerating pace. The CAES Demonstration Project in Huade County, Three Gorges supported with leading technologies by the Tsinghua University (EEA) - Anhui USEM Technology Co., Ltd., and the Huaneng Jintan Phase II CAES Project supported by Tsinghua University and the Xi’an Thermal Power Research Institute, have both been succeeded in power transmission. Together, their installed power capacity accounted for nearly 25% of all new installations in September. In terms of hybrid energy storage, the first grid-side hybrid energy storage station in Fengxian District, Shanghai, integrating four technologies of flow batteries, sodium-ion batteries, semi-solid-state batteries, and lithium iron phosphate batteries was officially put into operation.

Figure 6: Technological Distribution of Newly Commissioned Grid&Source-Side New Energy Storage Projects in China, Sep. 2025 (MW%)

Data Source: CNESA DataLink Global Energy Storage Database

https://www.esresearch.com.cn/


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo

The World’s First 600Ah+ Large Energy Storage Battery Project Successfully Delivers Power

On 8 September, the world's first 400MWh energy storage power station based on 628Ah large energy storage batteries achieved successful one-time power delivery.

Located in Lingxiu County, Shijiazhuang, east of the Taihang Mountains, the 200MW/400MWh stand-alone energy storage station has officially begun operation. This marks the world's first large-scale deployment of a 600Ah+ large energy storage battery in a 100MWh project, signifying that the energy storage industry has entered the era of “2 kWh per battery cell”.

Storage project at Hebei, with EVE 628Ah+ Cell

Large batteries are widely regarded as the key pathway to reducing the levelized cost of storage (LCOS). By increasing single-cell capacity and reducing system integration complexity, these batteries can significantly lower the total lifecycle cost of energy storage systems. In 2024, global energy storage shipments surpassed 300 GWh, marking the final sprint before the industry enters the TWh era. As policy subsidies gradually phase out, market competition now increasingly depends on technological strength and product performance.

EVE Energy has achieved three major technological leaps in the large energy storage battery sector - from concept unveiling to mass production and pioneering engineering applications - driving the industry into a new phase of high-quality development fueled by innovation. In October 2022, the company introduced the LF560K concept large energy storage battery, ushering in the “500Ah+” era. In January 2024, it globally premiered the 628Ah “Mr. Big” large energy storage battery, achieving a single-cell energy capacity exceeding 2 kWh. By September 2025, EVE commissioned the world’s first 400MWh-scale power station using these batteries, transitioning from lab to grid in just 20 months.

The value of large energy storage batteries is backed by solid data. Operational data from the Jingmen demonstration project in Hubei Province showed system energy efficiency consistently above 95.5%, while maintenance components were reduced by 50% and operational costs lowered by 30%. In July 2025, EVE’s 600Ah+ battery became the world’s first to be fully certified under China's new national standards. The following month, the company secured a 154MWh order from China Electrical Equipment Group - the world’s first commercial order for 600Ah+ large energy storage batteries.

Behind this technological leadership lies EVE’s philosophy of “long-termism”. Chairman Liu Jincheng emphasizes, “A battery is a living entity. We approach each one with reverence, ensuring every cell is crafted to perfection.” This reverence for technology is reflected in the company's sustained R&D investment: the company’s sustained R&D commitment is reflected in its team of over 6,000 researchers, cumulative R&D investment exceeding RMB 10 billion since 2020, more than 10,000 patents, and involvement in 25 national-level projects. At its 60GWh super factory in Jingmen, extreme manufacturing principles enable production of 1.5 batteries per second with defect rates controlled at the PPB level, ensuring exceptional consistency and reliability.

With production bases advancing in Malaysia and Hungary, EVE Energy continues to optimize its global capacity layout. The company aims to reach 328GWh production capacity by 2027, supporting the worldwide energy transition. It has established deep partnerships with leading enterprises such as State Grid, China Southern Power Grid, Huaneng, Huawei, and Sungrow, while also making breakthroughs in overseas markets including Australia.

Industry analysis indicates that the first half of 2026 will witness a concentrated release of 500Ah+ batteries. Through its Lingshou project, EVE Energy demonstrates that large batteries are not a future concept but an ongoing reality. The deployment of this world-first 600Ah+ energy storage power station is not only a technological milestone but also an industry signal: the era of large batteries for energy storage has arrived.


CENSA Upcoming Events:

1. Dec.4-5 | 2025 China Energy Storage CEO Summit | Xiamen, Fujian

Register Now to attend

Read more: http://en.cnesa.org/new-events-1/2025/12/4/dec4-5-2025-china-energy-storage-ceo-summit

2. Apr. 1-3, 2026 | The 14th Energy Storage International Conference & Expo

Register Now to attend, free before Oct 31, 2025.

Read more: https://en.cnesa.org/new-events-1/2026/4/1/apr-1-apr3-the-14th-energy-storage-international-exhibition-amp-expo